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AbstractÐIn this paper, we analyze the potential of asyn-
chronous relaxation methods on Graphics Processing Units
(GPUs). For this purpose, we developed a set of asynchronous
iteration algorithms in CUDA and compared them with a
parallel implementation of synchronous relaxation methods on
CPU-based systems. For a set of test matrices taken from
the University of Florida Matrix Collection we monitor the
convergence behavior, the average iteration time and the total
time-to-solution time. Analyzing the results, we observe that
even for our most basic asynchronous relaxation scheme,
despite its lower convergence rate compared to the Gauss-Seidel
relaxation (that we expected), the asynchronous iteration run-
ning on GPUs is still able to provide solution approximations
of certain accuracy in considerably shorter time than Gauss-
Seidel running on CPUs. Hence, it overcompensates for the
slower convergence by exploiting the scalability and the good
®t of the asynchronous schemes for the highly parallel GPU
architectures. Further, enhancing the most basic asynchronous
approach with hybrid schemes ± using multiple iterations
within the ºsubdomainº handled by a GPU thread block
and Jacobi-like asynchronous updates across the ºboundariesº,
subject to tuning various parameters ± we manage to not only
recover the loss of global convergence but often accelerate
convergence of up to two times (compared to the standard
but dif®cult to parallelize Gauss-Seidel type of schemes), while
keeping the execution time of a global iteration practically
the same. This shows the high potential of the asynchronous
methods not only as a stand alone numerical solver for linear
systems of equations ful®lling certain convergence conditions
but more importantly as a smoother in multigrid methods. Due
to the explosion of parallelism in todays architecture designs,
the signi®cance and the need for asynchronous methods, as the
ones described in this work, is expected to grow.

Keywords-Asynchronous Relaxation; Chaotic Iteration;
Graphics Processing Units (GPUs); Jacobi Method;

I. I NTRODUCTION

The latest developments in hardware architectures show
an enormous increase in the number of processing units
(computing cores) that form one processor. The reason for
this varies from various physical limitations to energy mini-
mization considerations that are at odds with further scaling
up of processor' frequencies ± the basic acceleration method
used in the architecture designs for the last decades [1]. Only
by merging multiple processing units into one processor does
further acceleration seem possible. One example where this

core gathering is carried to extremes is the GPU. The current
high-end products of the leading GPU providers consist of
448 CUDA cores for the NVIDIA Fermi generation [2] and
3072stream processors for the Northern Islands generation
from ATI [3]. While the original purpose of GPUs was
graphics processing, their enormous computing power also
suggests the usage as accelerators when performing parallel
computations. Yet, the design and characteristics of these
devices pose some challenges for their ef®cient use. In
particular, since the synchronization between the individual
processing units usually triggers considerable overhead, it is
attractive to employ algorithms that have a high degree of
parallelism and only very few synchronization points.

On the other hand, numerical algorithms usually require
this synchronization. For example, when solving linear sys-
tems of equations with iterative methods like the Conjugate
Gradient or GMRES, the parallelism is usually limited to
the matrix-vector and the vector-vector operations (with
synchronization required between them) [4] [5] [6]. Also,
methods that are based on component-wise updates like
Jacobi or Gauss-Seidel have synchronization between the
iteration steps [7] [8]: no component is updated twice (or
more) before all other components are updated. Still, it is
possible to ignore these synchronization steps, which will
result in a chaotic or asynchronous iteration process. Despite
the fact that the numerical robustness and convergence prop-
erties severely suffer from this chaotic behavior, they may
be interesting for speci®c applications, since the absence
of synchronization points make them perfect candidates for
highly parallel hardware platforms. The result is a trad-
off: while the algorithm's convergence may suffer from the
asynchronism, the performance can bene®t from the superior
scalability.

In this paper, we want to analyze the potential of employ-
ing asynchronous iteration methods on GPUs by analyzing
convergence behavior and time-to-solution when iteratively
solving linear systems of equations. We split this paper
into the following parts: First, we will shortly recall the
mathematical idea of the Jacobi iteration method and derive
the component wise iteration algorithm. Then the idea of an
asynchronous relaxation method is derived, and some ba-



sic characteristics concerning the convergence demands are
summarized. The section about the experiment framework
will ®rst provide information about the linear systems of
equations we target. The matrices af®liated with the systems
are taken from the University of Florida matrix collection.
Then we describe the asynchronous iteration method for
GPUs that we designed. In the following section we analyze
the experiment results with focus on the convergence behav-
ior and the iteration times for the different matrix systems. In
section V we summarize the results and provide an outlook
about future work in this ®eld.

II. M ATHEMATICAL BACKGROUND

A. Jacobi Method

The Jacobi method is an iterative algorithm for ®nding
the approximate solution for a linear system of equations

Ax = b; (1)

whereA is strictly or irreducibly diagonally dominant. One
can rewrite the system as(L + D + U)x = b where D
denotes the diagonal entries ofA while L andU denote the
lower and upper triangular part ofA, respectively. Using the
form Dx = b! (L + U)x, the Jacobi method is derived as
an iterative scheme

xm +1 = D ! 1(b! (L + U)xm ):

Denoting the error at iterationm + 1 by em +1 � xm +1 ! x,
this scheme can also be rewritten asem +1 = ( I ! D ! 1A)em .
The matrixM � I ! D ! 1A is often referred to asiteration
matrix. The Jacobi method provides a sequence of solution
approximations with increasing accuracy when the spectral
radius of the iteration matrixM is less than one (i.e.,
� (M ) < 1) [9].

The Jacobi method can also be rewritten in the following
component-wise form:

xm +1
i =

1
aii

0

@bi !
X

j 6= i

aij xm
j

1

A : (2)

B. Asynchronous Iteration Methods

For computing the next iteration in a relaxation method,
one usually requires the latest values of all components.
For some algorithms, e.g. Gauss-Seidel [7], even the already
computed values of the current iteration step are used. This
requires a strict order of the component updates, limiting the
parallelization potential to a stage, where no component can
be updated several times before all the other components are
updated.
The question of interest that we want to investigate is,
what happens if this order is not adhered. Since in this
case, the individual components are updated independently
and without consideration of the current state of the other
components, the resulting algorithm is called chaotic or

asynchronous iteration method. Back in the 70's Chazan and
Miranker analyzed some basic properties of these methods,
and established convergence theory [10]. In the last 30 years,
these algorithms were subject of dedicated research activities
[11], [12] [13] [14] [15] [16]. However, they did not play a
signi®cant role in high-performance computing, due to the
superior convergence properties of synchronized iteration
methods. Today, due to the complexity of heterogeneous
hardware platforms and the high number of computing units
in parallel devices like GPUs, these schemes may become
interesting again: they do not require explicit synchroniza-
tion between the computing cores, probably even located in
distinct hardware devices. Since the synchronization usually
thwarts the overall performance, it may be true that the
asynchronous iteration schemes overcompensate the inferior
convergence behavior by superior scalability.

The chaotic-, or asynchronous-relaxation scheme de®ned
by Chazan and Miranker [10] can be characterized by two
functions, an update functionu(�) and a shift functions(�; �).
For each non-negative integer� , the component of the
solution approximationx that is updated at step� is given
by u(� ). For the update at step� , themth component used
in this step iss(�; m ) steps back. All the other components
are kept. This can be expressed as:

x � +1
l =

( P N
m =1 bl;m x � ! s( �;m )

m + dl if l = u(� )
x �

l if l 6= u(� ):
(3)

Furthermore, the following conditions can be de®ned to
guarantee the well-posedness of the algorithm [17]:

1) The update functionu(�) takes each of the valuesl for
1 � l � N in®nitely often.

2) The shift functions(�; �) is bounded by some�s such
that 0 � s(�; m ) � �s 8� 2 f 1; 2; : : : g; 8m 2
f 1; 2; : : : ; N g. For the initial step, we additionally
requires(�; m ) � � .

3) The shift functions(�; �) is independent ofm.
If these conditions are satis®ed and� (jM j) < 1 (i.e., the

spectral radius of the iteration matrix, taking the absolute
values for its elements, to be smaller than one), the conver-
gence of the asynchronous method is ful®lled [17].

Depending on the exchange of the updated components,
Baudet classi®ed the asynchronous iterative methods into
three sub-methods [18]:

1) The purely asynchronous method (PA);
2) The asynchronous Jacobi method (AJ);
3) The asynchronous Gauss-Seidel method (AGS).
The PA method releases each new value immediately after

its computation, while the AJ and AGS methods exchange
new values only at the end of each iteration. The only
difference between the AJ and AGS methods is the choice
of the values of unknowns within each iteration. The AGS
method uses new values of unknowns in its subsequent



method broadcast used values bound for shift
PA Immediately Latest available js(�; m )j < �s
AJ End of Iter. Begin of Iter. 0 � s(�; m ) < �s

AGS End of Iter. Latest available ! 1 � s(�; m ) < �s

Table I: Basic properties of the different subclasses of
asynchronous iteration methods.

updates as soon as they are computed in the same iteration,
while the AJ method uses only values that are set at the
beginning of an iteration. In general, the term asynchronous
iteration method that we use refers to the PA method. The
basic properties are summarized in Table I.

Since the barrier synchronization between the iterations
is usually daunting when using highly parallel devices,
the purely asynchronous method is most suitable for both
communication- and synchronization-avoiding iterative im-
plementations.

The GPU implementation of the asynchronous iteration
method that we consider in III-C is of purely asynchronous
nature. For convenience, from now on we will use the term
asynchronous iteration method if we refer to the PA iteration.

III. E XPERIMENT FRAMEWORK

A. Linear Systems of Equations

In our experiments, we search for the approximate solu-
tions of linear system of equations, where the respective
matrices are taken from the University of Florida Ma-
trix Collection (UFMC; see http://www.cise.u¯.edu/research/
sparse/matrices/). Due to the convergence properties of the
iterative methods considered the experiment matrices have
to be properly chosen. While for the Jacobi method a
suf®cient condition for convergence is clearly� (M ) =
� (I ! D ! 1A) < 1 (i.e., the spectral radius of the iteration
matrix M to be smaller than one), the convergence theory
for asynchronous iteration methods is more involved (and is
not the subject of this paper). In [17] John C. Strikwerda
has shown, that a suf®cient condition for the asynchronous
iteration to converge for all update and shift functions
satisfying conditions (1), (2) and (3) in II-B is the condition
� (jM j) < 1, wherejM j is derived fromM by replacing its
elements by their corresponding absolute values.
Due to these considerations, we choose to only analyze sym-
metric, positive de®nite systems, where the Jacobi method
converges. The matrices and their descriptions are summa-
rized in Table II, their structures can be found in Figure
1. Table III additionally provides some of the convergence
related characteristics of the test matrices as well as of their
corresponding iteration matrices.

We furthermore take the number of right-hand sides to be
one for all linear systems.

B. Hardware and Software Issues

The experiments were conducted on a heterogeneous
GPU-accelerated multicore system located at the University

Matrix name Description # n # nnz
CHEM97ZTZ statistical problem 2,541 7,361
FV1 2D/3D problem 9,604 85,264
FV2 2D/3D problem 9,801 87,025
FV3 2D/3D problem 9,801 87,025
S1RMT3M1 structural problem 5,489 262,411
TREFETHEN 2000 combinatorial problem 2,000 41,906

Table II: Dimension and characteristics of the SPD test
matrices.

Matrix name cond(A) cond(D ! 1A) � (M )
CHEM97ZTZ 1.3e+03 7.2e+03 0.7889
FV1 9.3e+04 12.76 0.8541
FV2 9.5e+04 12.76 0.8541
FV3 3.6e+07 4.4e+03 0.9993
S1RMT3M1 2.2e+06 7.2e+06 2.65
TREFETHEN 2000 5.1e+04 6.1579 0.8601

Table III: Convergence characteristics of the test matrices
and of their corresponding iteration matrices.

of Tennessee, Knoxville. The system's CPU is one socket
Intel Core Quad Q9300 @ 2.50GHz and the GPU is a Fermi
C2050 (14 Multiprocessors x 32 CUDA cores @1.15GHz,
3 GB memory). The GPU is connected to the CPU host
through a PCI-e� 16.

In the synchronous implementation of Gauss-Seidel on
the CPU,4 cores are used for the matrix-vector operations
that can be parallelized. Intel compiler 11.1.069 [19] is used
with optimization ¯ag ª-O3º. The GPU implementations of
the asynchronous iteration and the Jacobi method are based
on CUDA [20], while the respective libraries used are from
CUDA 4.0.17 [21]. The component updates were coded in
CUDA, using thread blocks of size512. The kernels are then

(a) CHEM97ZTZ (b) FV, FV2, FV3

(c) S1RMT3M1 (d) TREFETHEN 2000

Figure 1: Sparsity plots of test matrices.



launched through different streams. The thread block size,
the number of streams, along with other parameters, were
determined through empirically based tuning.

C. An asynchronous iteration method for GPUs

The asynchronous iteration method for GPUs that we
propose is split into two levels. This is due to the design
of graphics processing units and the CUDA programming
language.
The linear system of equations is split into blocks of rows,
and the computations for each block is assigned to one
thread block on the GPU. For these thread blocks, a PA
iteration method is used, while on each thread block, a
Jacobi-like iteration method is performed. We denote this
algorithm byasync-(1).
Further, we extended this basic algorithm to a version where
the threads in a thread block perform multiple Jacobi itera-
tions (e.g.,5) within the block. During the local iterations the

x values used from outside the block are kept constant (equal
to their values at the beginning of the local iterations). After
the local iterations, the updated values are communicated.
This approach was also analyzed in [22] and is inspired
by the well know hybrid relaxation schemes [23] [24], and
therefore we denote it as ablock-asynchronous approach.
In other words, using domain-decomposition terminology,
our blocks would correspond to subdomains and thus we
additionally iterate locally on every subdomain. We denote
this scheme byasync-(i), where the indexi indicates that we
usei Jacobi updates on the subdomain. Another motivation
for this comes from the hardware side, especially the fact
that the additional iterations almost come for free (as the
subdomains are relatively small and the data needed largely
®ts into the multiprocessor's cache). The obtained algorithm,
visualized in Figure 2, can be written as component-wise
update of the solution approximation:

x (m +1)
k + =

1
akk

0

B
B
B
B
B
@

bk !
TSX

j =1

akj x (m ! � (m +1 ;j ))
j

| {z }
global part

!
TEX

j = TS

akj x (m )
j

| {z }
local part

!
nX

j = TE

akj x (m ! � (m +1 ;j ))
j

| {z }
global part

1

C
C
C
C
C
A

; (4)

whereTS andTE denote the starting and the ending indexes
of the matrix/vector part in the thread block. Furthermore,
for the local components, the always antecedent values are
used, while for the global part, the values from the beginning
of the iteration are used. The shift function� (m + 1 ; j )
denotes the iteration shift for the componentj - this can be
positive or negative, depending on whether the respective
other thread block already has conducted more or less
iterations. Note that this gives a block Gauss-Seidel ¯avor
to the updates. It should also be mentioned, that the shift
function may not be the same in different thread blocks.

IV. N UMERICAL EXPERIMENTS

A. Stochastic impact of chaotic behavior of asynchronous
iteration methods

At this point it should be mentioned, that only the
synchronous Gauss-Seidel and Jacobi methods are
deterministic. For the asynchronous iteration method on
the GPU, the results are not reproducible at all, since for
every iteration run, a very unique pattern of component
updates is conducted. It may be possible, that another
component update order may result in faster or slower
convergence. Especially when the component update order
of the synchronous Jacobi or Gauss-Seidel method is

��������	
��
�

��������	
��
�

Figure 2: Visualizing the asynchronous iteration in block
description used for the GPU implementation.

chosen, considerable performance increase can be expected.

The variations in the convergence behavior will increase
with the number of iterations, since for higher iteration
numbers, the random component updates multiply their in-
¯uence. Additionally, the in¯uence of the unique component
update order may have even more impact, when iterating
locally. This was also observed in our experiments. Also
the matrix properties like condition number may have some
impact.



Figure 3: Statistic convergence behaviour of asynchronous
iteration method.
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But the important question is, whether these stochastic
effects are crucial when using asynchronous iteration meth-
ods.

To investigate this issue, we conduct multiple solver
runs using the same experimental setup and monitor the
relative residual behavior for the different simulations. To
enhance the effect, we use the async-(5) algorithm and merge
multiple kernels into one stream.

The results reported in Table IV are based on 100 simula-
tion runs on the test matrixFV3. Additionally we provide in
IV information about the statistical parameter like variance,
standard deviation and standard error. Analyzing the results,
we observe only small variations in the convergence behav-
ior: for 1000 iterations the relative residual is improved by
5 � 10! 2, the maximal variation between the fastest and the
slowest convergence rate is in the order of10! 5. While the
order of the residual decreases for additional iterations by a
factor of 10! 1 for 1000 iterations, this is almost also true
for the maximal variation of the convergence rate. Achieving
an average relative residual of1:438192E ! 11 after 9000
iterations, the variation relative residual difference of the best
and worst converging solver run is in the order of10! 15.

Analyzing Figure 3, we observe that the relative variation
of the fastest and slowest convergence shows only a very
small increase with respect to the iteration number.

Since in all experiments we never observed variations in
the convergence rate of the asynchronous iteration method
larger than 1%, it seems reasonable to neglect the issue
of the unique component update pattern, and to state the
further results for the asynchronous iteration method as
average, knowing that a different solution update pattern
may lead to a slightly faster or slower convergence rate.

B. Convergence rate of the asynchronous iteration method

In the next experiment, we analyze the convergence
behavior of the asynchronous iteration method and compare

# iters variance standard deviation standard error
� P

i ( x i ! �x )
n ! 1

� � q P
i ( x i ! �x )
n ! 1

� � r P
i ( x i ! �x )

n ( n ! 1)

�

1000 1.267907777E-11 3.560769267E-06 1.186923089E-06
2000 2.852852777E-14 1.689039010E-07 5.630130033E-08
3000 1.723400000E-16 1.312783302E-08 4.375944342E-09
4000 1.739569444E-18 1.318927384E-09 4.396424613E-10
5000 2.024053694E-20 1.422692410E-10 4.742308034E-11
6000 6.345816111E-23 7.966063087E-12 2.655354362E-12
7000 1.158381944E-25 3.403501056E-13 1.134500352E-13
8000 1.977760010E-27 4.447201367E-14 1.482400455E-14
9000 2.860577777E-30 1.691324267E-15 5.637747558E-16

Table IV: Variations of the convergence behavior for 100
solver runs onFV3.

# iters averg. residual max res min res. variation
1000 5.891843E-02 5.892425E-02 5.891381E-02 1.04E-05
2000 3.704219E-03 3.704469E-03 3.704032E-03 4.37E-07
3000 2.328863E-04 2.329025E-04 2.328636E-04 3.89E-08
4000 1.463948E-05 1.464075E-05 1.463681E-05 3.94E-09
5000 9.204411E-07 9.206522E-07 9.202036E-07 4.49E-10
6000 5.787439E-08 5.788572E-08 5.786295E-08 2.28E-11
7000 3.638487E-09 3.638883E-09 3.637891E-09 9.92E-13
8000 2.287199E-10 2.287934E-10 2.286609E-10 1.33E-13
9000 1.438192E-11 1.438458E-11 1.438008E-11 4.50E-15

Table V: Variations of the convergence behavior for 100
solver runs onFV3.

it with the convergence rate of the Gauss-Seidel and Jacobi
method.

The experiment results, summarized in Figures 4, 5, 6, 7
and 9, show that for test systems CHEM97ZTZ, FV1, FV2,
FV3 and TREFETHEN 2000 the synchronous Gauss-Seidel
algorithm converges in considerably less iterations. This
superior convergence behaviour is intuitively expected, since
the synchronization after each component update allows
the use the updated components immediately for the next
update. For the Jacobi implementation, the synchronization
after each iteration ensures the usage of updated components
for the next iteration. Since this is not true for the asyn-

Figure 4: Convergence for test matrix CHEM97ZTZ
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Figure 5: Convergence for test matrixFV1
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Figure 6: Convergence for test matrixFV2
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Figure 7: Convergence for test matrixFV3
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Figure 8: Convergence for test matrixS1RMT3M1
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Figure 9: Convergence for test matrix TREFETHEN 2000

�����

�����

�����

�

� �� ��� ��� ���

���
	
�

�


��	����

��������	
�
�������
�����	�������

����������������

chronous iteration, the convergence depends on the problem
and the update order ± the usage of updated components
implies the potential of a Gauss-Seidel convergence rate,
while the chaotic properties may trigger convergence slower
than Jacobi.

Still, we observe for all test cases convergence rates
similar to the synchronized counterpart, which is also almost
doubled compared to Gauss-Seidel.

The results for test matrixS1RMT3M1 (Figure 8) show
an example where neither of the methods is suitable for
direct use. The reason is that here� (M ) > 1 (in particular,
� (M ) � 2:65). Nevertheless, note that this matrix is SPD
and Jacobi-based methods still can be used after a proper
scaling is added, e.g., takingM = I ! �D ! 1A with � =

2
� 1 + � n

, where� 1 and � n approximate correspondingly the
smallest and largest eigenvalue ofD ! 1A.

C. Block-asynchronous iteration method

We now consider a block-asynchronous iteration method
which additionally performs a few Jacobi-like iterations on
every subdomain. A motivation for this approach is hardware



computation time for # global iterations
method 100 200 300 400 500

async-(1) 1.376425 2.437521 3.501462 4.563519 5.624792
async-(2) 1.431110 2.546361 3.660030 4.773864 5.891870
async-(3) 1.482574 2.654470 3.819478 4.987472 6.156434
async-(4) 1.532940 2.749808 3.972644 5.191812 6.410378
async-(5) 1.577105 2.838185 4.099068 5.363081 6.655686
async-(6) 1.629628 2.938897 4.255335 5.569045 6.879329
async-(7) 1.680975 3.044979 4.412199 5.778823 7.144304
async-(8) 1.736295 3.148895 4.571684 5.990520 7.409536
async-(9) 1.786658 3.259132 4.730689 6.202893 7.676786

Table VI: Overhead to total execution time by adding local
iterations, matrixFV3.

related ± speci®cally, this is the fact that the additional
local iterations almost come for free (as the subdomains
are relatively small and the data needed largely ®ts into the
multiprocessors' caches). In Table VI we report the overhead
triggered by the additional local iterations conducted on the
subdomains. Switching from async-(1) to async-(2) affects
the total computation time by less than5%, independent of
the total number of global iterations. At the same time, this
leads to an algorithm where every component is updated
twice as often. Even if we iterate every component locally
by say 9 Jacobi iterations, the overhead is less than35%,
while the total updates for every component differ by a factor
of 9. There exists though a critical point, where adding more
local iterations does not improve the overall performance. It
is dif®cult to analyze the trade-off between local and global
iterations [25], and we desist from giving a general statement
for the optimal choice of local iterations. This is due to the
fact that the choice depends not only on the characteristics
of the linear problem, but also on the iteration status of
the thread block and the local components (as related to
the asynchronicity), subdomain sizes, and other parameters.
Based on empirical tuning and intuition (trying to match the
convergence of the new method to that of a Gauss-Seidel
iteration) we set the number of local Jacobi-like updates
to ®ve. Therefore we chose async-(5) for our subsequent
analysis of the block-asynchronous iteration method for
GPUs. From now on, the number of iterations we report
is only the number of global iterations, where every single
component is updated ®ve times.

Now, we compare the convergence rate of async-(5) with
the Gauss-Seidel convergence rate.

As theoretically expected, synchronous relaxation as well
as the block-asynchronous async-(5) are not directly suitable
to use for theS1RMT3M1 matrix. Besides this case, the
async-(5) improves the convergence rate for all other test
cases. In fact, as a rule of thumb, we would expect, and
indeed observe as shown below, an improvement factor of
about two.

The rule of thumb expectation for the convergence rate
of the async-(5) algorithm is based on the rate with which
values are updated and the rate of propagation for the up-

Figure 10: Convergence behavior of async-(5) for test matrix
CHEM97ZTZ
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Figure 11: Convergence behavior of async-(5) for test matrix
FV1

�����

�����

�����

�

� �� ��� ��� ���

���
	
�

�


��	����

��������	
�
�������
����������������

Figure 12: Convergence behaviour of async-(5) for test
matrix FV2
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Figure 13: Convergence behavior of async-(5) for test matrix
FV3
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Figure 14: Convergence behavior of async(5) for test matrix
S1RMT3M1
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Figure 15: Convergence behavior of async-(5) for test matrix
TREFETHEN 2000
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dates. For example, this is the observation that Gauss-Seidel
has in general twice better convergence rate than Jacobi. In
other words, four Jacobi iterations would be expected (in
general) to be twice better than one Gauss-Seidel iteration.
The experiments show that the convergence of async-(5) for
CHEM97ZTZ is characteristic for the convergence of the
synchronous Jacobi iteration. This can be explained by the
fact that the local matrices for CHEM97ZTZ are diagonal
and therefore it does not matter how many local iterations
would be performed. An improvement for this case can be
obtained by reordering. The case for TREFETHEN 2000 is
similar ± although there is improvement compared to Jacobi,
the rate of convergence for async-(5) is not twice better than
Gauss-Seidel, and the reason is again the structure of the
local matrices (see Figure 1 for the structure of the matrices
and Figures 10 and 15 for the convergence results). Consid-
ering the remaining linear systems of equationsFV1, FV2
andFV3, we obtain approximately twice faster convergence
by using the async-(5) algorithm (see Figures 11, 12, and
13). Since for these cases most of the relevant matrix entries
are gathered on or near the diagonal and therefore are taken
into account in the local iterations on the subdomains, we
observe the convergence gain expected by iterating locally.
Hence, as long as the asynchronous method converges and
the off-block entries are ªsmallº, adding local iterations may
be used to not only compensate the convergence loss due to
the chaotic behavior, but moreover to gain signi®cant overall
convergence improvements.

But the convergence rate alone does not determine,
whether an iterative method is ef®cient or not. The second
important characteristic we must analyze is the time needed
to execute one iteration on the respective hardware platform.
While the time can be easily measured for the synchronous
iteration methods, the nature of asynchronous relaxation
schemes does not allow the determination of the time needed
per iteration, since not all components are updated at the
same time. Hence, only an average time per global iteration
can be computed by dividing the total time by the total num-
ber of iterations. Therefore, we also use an average time for
the CPU implementation. It should also be mentioned, that
while the average timings for one iteration on the CPU are
almost constant, for the GPU implementations the iteration
time differs considerably. Due to the large overhead when
performing only a small number of iterations, the average
computation time per iteration decreases signi®cantly for
cases where a large number of iterations is conducted. This
behavior is shown in Figure 16, where the average iteration
timings for the test matrixFV3 are reported. As average
time per iteration for the GPU implementations, we took
the average of the cases when conducting10; 20; 30: : : 200
iterations. The average timings for the Gauss-Seidel method
on the CPU and the Jacobi and async-(5) iteration on the
GPU are shown in Table VII. Note that the iteration time
for Jacobi is slightly higher due to the synchronization after
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Figure 16: Average iteration timings of CPU/GPU imple-
mentations depending on total iteration number, test matrix
FV3.

Matrix name G.-S. (CPU) Jacobi (GPU) async-(5) (GPU)
CHEM97ZTZ 0.008448 0.002051 0.001742
FV1 0.120191 0.019449 0.012964
FV2 0.125572 0.020997 0.014729
FV3 0.125577 0.021009 0.014737
S1RMT3M1 0.039530 0.006442 0.004967
TREFETHEN 2000 0.007603 0.001494 0.001305

Table VII: Average iteration timings in seconds.

each iteration.
Overall, we observe, that the average iteration time for

the async-(5) method using the GPU is only a fraction of
the time needed to conduct one iteration of the synchronous
Gauss-Seidel on the CPU. While for small iteration numbers
and problem sizes we have a factor of around5, it rises
over 10 for large systems and high total iteration numbers.
The question is, whether the faster component updates can
overcompensate the cases of slower convergence rate, i.e.
the matrices CHEM97ZTZ and TREFETHEN 2000. In this
case, the asynchronous method using the GPU as accelerator
would still outperform the synchronous Gauss-Seidel on the
CPU.

D. Performance of the block-asynchronous iteration method

To analyze the performance of the block-asynchronous
iteration method, we show in Figures 17, 18 19, 20, and
21 the average time needed for the synchronous Gauss-
Seidel, the synchronous Jacobi and the block-asynchronous
iteration method to provide a solution approximation of
certain accuracy, relative to the initial residual. We want to
mention, that due to the implementation of the asynchronous
method on the GPU where10 iterations are merged into a
stream of kernels, over-relaxation is possible. This means,
that the demanded accuracy could have been achieved earlier
by conducting a smaller number of iterations, but since the
overhead of at most9 additional iterations is small, this

Figure 17: Time to solution for CHEM97ZTZ.
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Figure 18: Time to solution forFV1.
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issue has no signi®cant impact on the performance of the
method. Since the convergence of the Gauss-Seidel method
for S1RMT3M1 is almost negligible, and the Jacobi and the
asynchronous iteration does not converge at all, we limit this
analysis to the linear systems of equations CHEM97ZTZ,
FV1, FV2, FV3 and TREFETHEN 2000.

We observe, that for CHEM97ZTZ, FV1, FV2, andFV3
async-(5) using the GPU is able to provide the solution
approximation of the demanded accuracy in a considerably
shorter time frame than the synchronous Gauss-Seidel or
Jacobi. Especially for high accuracy approximations, the
speedup gained by the block-asynchronous GPU implemen-
tation is signi®cant. This is due to the fact that for these
high iteration numbers the overhead triggered by memory
transfer and GPU kernel call has minor impact. Hence, the
cases of slower convergence rate can be overcompensated
by the higher computational power that is used. For lin-
ear equation systems with considerable off-diagonal part
e.g. CHEM97ZTZ, the improvement compared to Jacobi
becomes smaller since the entries outside the subdomains are



Figure 19: Time to solution forFV2.
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Figure 20: Time to solution forFV3.
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Figure 21: Time to solution for TREFETHEN 2000.
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not taken into account for the local iterations. Still, due to
the faster kernel execution the block-asynchronous iteration
provides the solution approximation in shorter time.

For TREFETHEN 2000, the async-(5) method using the
GPU does not reach the Gauss-Seidel performance on
the CPU for small iteration numbers. This is due to the
characteristics of the test matrix: the linear system combines
small dimension with low condition number, enabling fast
convergence. In this case the overhead triggered by the
GPU kernel calls is crucial. But as the difference between
the execution times is small, applying the GPU-accelerated
asynchronous scheme would not be fatal. Going to higher
iteration numbers, also for this test case, the async-(5)
outperforms the CPU implementation of Gauss-Seidel.

As already stated, using Jacobi-type iterations is not a
good choice for theS1RMT3M1 problem. Although the
suf®cient for convergence condition is not satis®ed, the
synchronous Gauss-Seidel converges slowly but neither the
Jacobi nor the asynchronous method converges. Hence,
using asynchronous methods is only reasonable as long
as the convergence can be guaranteed. Otherwise, it is a
statistical question whether the asynchronous scheme will
provide a solution approximation in a shorter time, since it
may always be possible, that the ºrightº order of component
updates is chosen, leading to a synchronous version of the
algorithm.

We conclude from this analysis, that asynchronous itera-
tion schemes using parallel devices have to be used carefully,
but for suitable systems they may trigger considerable per-
formance increase when solving linear systems of equations.

V. CONCLUSIONS

We developed asynchronous relaxation methods for highly
parallel architectures. The experiments have revealed the
potential of using them on GPUs. The absence of synchro-
nization points enables not only to reach a high scalability,
but also to ef®ciently use the GPU architecture. Adding
local re®nement steps into the GPU kernels improves the
convergence without impacting the execution time of a
global iteration. As a result, for all suf®ciently large test
cases where the asynchronous iteration converged, the block-
asynchronous iteration method (with5 subdomain iterations)
improves two times the convergence rate of the effective but
dif®cult to parallelize Gauss-Seidel method, while retaining
the high-performance and scalability enabled by its asyn-
chronous nature. Nevertheless, the numerical properties of
asynchronous iteration pose some restrictions on the usage.
The conditions for their convergence limit the area where
asynchronous iteration methods can be applied. Since the
matrix characteristics are in general not known a priori,
e.g., in purely algebraic methods, it seems reasonable to
apply asynchronous iteration only to cases where the matrix
properties are known/expected (or can be derived easily



on the ª¯yº), e.g., matrices derived from particular PDE
discretizations. Therefore, one focus of future research will
be on using asynchronous iterations schemes for cases where
their synchronous counterparts are known to work.

The presented approach could be embedded in a multigrid
framework, replacing the traditional Gauss-Seidel based
smoothers. However it is still a subject of further research
how to determine the optimal number for the various param-
eters arising in the asynchronous methods, such as number
of local iterations, subdomain sizes, scaling parameters, etc.,
with respect to the problem. This optimization may not only
be dependent on the problem, but also on the parameters
in the multigrid framework like prolongation operator and
number of pre- and post-smoothing steps, and the used
hardware system.
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